(Affiliated to KOLHAN UNIVERSITY, Chaibasa)

Question BankCourse: BSc IT 1st YearSubject Code: ITS01Subject: MATHEMATICS

All questions carry equal marks.

Calculus

1. If $y = e^{ax} \sin bx$, find y_n

2. If
$$y = \frac{1}{x^2 + a^2}$$
 find y_n

3. State and prove Leibnitz's Theorem. (n-th derivation of the product of two functions)

4. If
$$y^{\frac{1}{m}} + y^{\frac{1}{m}} = 2x$$
, prove that $(x^2 - 1)y_2 + xy_1 - m^2y = 0$, where $y_1 = \frac{dy}{dx}$, $y_2 = \frac{d^2y}{dx^2}$

5. If
$$y = \frac{\sin^{-1}x}{\sqrt{1-x^2}}$$
, $|x| < 1$, show that

i.
$$(1-x^2)v_2 - 3xv_1 - v = 0$$

ii.
$$(1-x^2)y_{n+2}-(2n+3)xy_{n+1}-(n+1)^2y_n=0$$

6. If
$$y = cos(10 cos^{-1}x)$$
, show that $(1-x^2)y_{12} = 21xy_{11}$

7. If $y = \cos (m \sin^{-1} x)$, Show that

i.
$$(1 - x^2)v_2 - xv_1 + m^2v = 0$$

ii.
$$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y = 0$$

Also, find the value of y_n when $x = 0$

8. If $y = e^{\cos^{-1}x}$, Show that an equation connecting y_n , y_{n+1} and y_{n+2} is given by $(1-x^2)y_{n+2}-(2n+1)xy_{n+1}-(n^2+1)y_n=0$

9. If
$$y = \sin^{-1} x$$
, then show that

i.
$$(1-x^2)y_2 - xy_1 = 0$$

ii.
$$(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} - n^2y_n = 0$$

Find also the value of $(y_n)_0$

10. If
$$\log y = \tan^{-1}x$$
, then prove that

i.
$$(1 + x^2)y_2 + (2x - 1)y_1 = 0$$

ii.
$$(1 + x^2)y_{n+2} + (2nx + 2x - 1)y_{n+1} + n(n+1)y_n = 0$$

(Affiliated to KOLHAN UNIVERSITY, Chaibasa)

 Question Bank
 Course
 : BSc IT 1st Year

 Subject Code
 : ITS01
 Subject
 : MATHEMATICS

All questions carry equal marks.

- 11. State Maclaurin's series Infinite from.
- 12. State Rolle's theorem- Expansion of function in Infinite power series. Taylor's serious (extended to infinity)
- 13. Expand $(\sin^{-1}x)^2$ in a series of ascending power of x.
- 14. Assuming expansion of sin x, prove that

 $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$

From the series

Sin x = $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$

which converges for all vales of x, we get the required result by differentiation.

15. Show that the maximum value of xy subject to the condition

3x + 4y = 5 is $\frac{25}{48}$

- 16. When does the function $\sin 3x 3\sin x$ attain its maximum or minimum values in $(0, 2\pi)$?
- 17. Show that of all rectangles of given area, the square has the smallest perimeter.
- 18. Show that the maximum value of $x^2 \log \left(\frac{1}{x}\right)$ is $\frac{1}{2e}$.
- 19. Prove that the function $f(x, y) = x^3 + 3x^2 + 4xy + y^2$ attains a minimum at the point

$$\left(\frac{2}{3}, -\frac{4}{3}\right)$$
.

20. Find the extreme value of $f(x, y) = 2x^2 - xy + 2y^2 - 20x$.

(Affiliated to KOLHAN UNIVERSITY, Chaibasa)

Question Bank BSc IT 1st Year Course Subject Code : ITS01 **Subject MATHEMATICS**

All questions carry equal marks.

Vectors

1. If $\overrightarrow{r} = \overrightarrow{a} \cos wt + \overrightarrow{b} \sin wt$, show that

i.
$$\overrightarrow{r} \times \overrightarrow{dr} = \overrightarrow{wa} \times \overrightarrow{b}$$

$$ii. \frac{d^2 \vec{r}}{dt^2} = -w^2 \vec{r}$$

Where \overrightarrow{a} and \overrightarrow{b} are constant vectors

2. If
$$\overrightarrow{r_1} = \overrightarrow{t^2} \overrightarrow{i} - \overrightarrow{t} \overrightarrow{j} + (2t+1) \overrightarrow{k}$$

$$\overrightarrow{r_2} = (2t-3) \overrightarrow{i} + \overrightarrow{j} - \overrightarrow{t} \overrightarrow{k},$$

Find (i)
$$\frac{d}{dt}$$
 $(\overrightarrow{r_1} \cdot \overrightarrow{r_2})$

Find (i)
$$\frac{d}{dt}$$
 ($\overrightarrow{r_1}$. $\overrightarrow{r_2}$) (i) $\frac{d}{dt}$ ($\overrightarrow{r_1} \times \overrightarrow{r_2}$) when $t = 1$

3. If a is a unit vector, prove that

$$\left| \mathbf{a} \times \frac{d\overrightarrow{a}}{dt} \right| = \left| \frac{d\overrightarrow{a}}{dt} \right|$$

4. If r is the unit vector in the direction of r, show that $r \times d = r \times d =$

5. If $F = \frac{\overrightarrow{r} \times \overrightarrow{a}}{\overrightarrow{s}}$ where **a** is a constant vector, find $\frac{d\overrightarrow{F}}{dt}$.

6. If
$$\overrightarrow{a} = \sin\theta \overrightarrow{i} + \cos\theta \overrightarrow{j} + \theta \overrightarrow{k}$$

 $\overrightarrow{b} = \cos\theta \overrightarrow{i} - \sin\theta \overrightarrow{j} - 3 \overrightarrow{k}$
 $\overrightarrow{c} = 2 \overrightarrow{i} + 3 \overrightarrow{j} - \overrightarrow{k}$

find
$$\frac{d}{d\theta} \{ \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) \}$$
 at $\theta = 0$

7. A particle moves along the curve $x = a \cos t$, $y = a \sin t$ and z = bt, find velocity and acceleration at t = 0 and $t = \pi/2$.

(Affiliated to KOLHAN UNIVERSITY, Chaibasa)

Question Bank	Course	:	BSc IT 1st Year
Subject Code : ITS01	Subject	:	MATHEMATICS

All questions carry equal marks.

8. If **a** and **b** are constant vector and t the time variable, show that a particle whose position vector at any instant is

 $\overrightarrow{r} = \overrightarrow{a} \cos wt + \overrightarrow{b} \sin wt$

is moving in an ellipse whose centre is the origin and that the motion is due to a central force varying as the distance.

- 9. Evaluate $\frac{dy}{dx} \left(\overrightarrow{r} \cdot \frac{d\overrightarrow{r}}{dt} \times \frac{d^2\overrightarrow{r}}{dt^2} \right)$
- **10.** Show the necessary and sufficient condition for the vector $\overrightarrow{\mathbf{V}}$ of the scalar variable \mathbf{t} to have constant magnitude is

$$\overrightarrow{V} \cdot \frac{dV}{dt} = 0$$

- **11.** If $\overrightarrow{V} \times \frac{d\overrightarrow{V}}{dt} = 0$, then Show that $\overrightarrow{V}(t)$ is a constant vector i.e $\overrightarrow{V}(t)$ has a fixed direction.
- **12.** Find the value of \overrightarrow{r} satisfying the equation

$$\overrightarrow{a} \times \frac{d^2 \overrightarrow{r}}{dt^2} = b; (\overrightarrow{a}.\overrightarrow{b} = 0)$$

- 13. If $\vec{r} = a \cos t \vec{i} + a \sin t \vec{j} + t \vec{k}$, find $\frac{d\vec{r}}{dt}$, $\frac{d^2 \vec{r}}{dt^2}$ and $\frac{d^2 \vec{r}}{dt^2}$
- **14.** If $r = t^2i tj + (2t + 1)k$, find the value of

i.
$$\frac{d\overrightarrow{r}}{dt} \cdot \frac{d^2\overrightarrow{r}}{dt^2}$$
 ii. $\left| \frac{d\overrightarrow{r}}{dt} \right|$ iii. $\frac{d^2\overrightarrow{r}}{dt^2}$ at $t = 0$

15. If $\overrightarrow{r_1} = \overrightarrow{t^3} \overrightarrow{i} - \overrightarrow{t^2} \overrightarrow{j} + \overrightarrow{t} \overrightarrow{k}$ and $\overrightarrow{r_2} = (t+1) \overrightarrow{i} + (t+2) \overrightarrow{j} - 3t \overrightarrow{k}$, find

i.
$$\frac{d}{dt}(\overrightarrow{r_1}, \overrightarrow{r_2})$$
 ii. $\frac{d}{dt}(r_1 \times r_2)$ at $t = 2$

16. If $r = a e^{nt} + b e^{-nt}$ where a, b are constant vectors, show that

(Affiliated to KOLHAN UNIVERSITY, Chaibasa)

Course

Ouestion Bank

Subject Code : ITS01

MATHEMATICS

BSc IT 1st Year

All questions carry equal marks.

$$\frac{d^2r}{dt^2} - n^2r = 0$$

17. Given $r = 4a \sin^3\theta i + 4a \cos^3\theta j + 3b \cos 2\theta k$, prove that

$$\left(\frac{\mathrm{d}\,\mathrm{r}}{\mathrm{d}\theta} \times \frac{\mathrm{d}^2\,\mathrm{r}}{\mathrm{d}\theta^2}, \frac{\mathrm{d}^3\,\mathrm{r}}{\mathrm{d}\theta^3}\right) = -216\,\mathrm{a}^2\mathrm{b}\,\mathrm{sin}^32\theta$$

18. A particle moves along a curve whose parametric equation are $x = e^{-1}$, $y = a \cos 3t$,

 $z = b \sin 3t$ where **t** is the time and **a** and **b** are constant scalars.

- Determine its velocity and acceleration at any time.
- Find the magnitudes of velocity and acceleration at t = 0.

19. If
$$\frac{d\overrightarrow{a}}{dt} = c \times a$$
, $\frac{d\overrightarrow{b}}{dt} = \overrightarrow{c} \times \overrightarrow{b}$, show that $\frac{d}{dt} (\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{c} \times (\overrightarrow{a} \times \overrightarrow{b})$

20. Prove that

$$\frac{\mathrm{d}}{\mathrm{dt}} \left\{ \overrightarrow{u} \times \frac{d\overrightarrow{v}}{dt} - \frac{d\overrightarrow{u}}{dt} \times \overrightarrow{v} \right\} = \left\{ \overrightarrow{u} \times \frac{d^2\overrightarrow{v}}{\mathrm{dt}^2} - \frac{d^2\overrightarrow{u}}{\mathrm{dt}^2} \times \overrightarrow{v} \right\}$$

21. Evaluate the derivatives of the following w.r.t. t.

$$rac{\Rightarrow \Rightarrow}{r+a}$$

 $rac{\Rightarrow r^2+a^2}$

22. Evaluate
$$\frac{d^2}{dt^2} \left(r \cdot \frac{d\vec{r}}{dt} \times \frac{d^2 \vec{r}}{dt^2} \right)$$

23. Evaluate
$$\frac{d}{dt} \left\{ \left(r \times \frac{d\overrightarrow{r}}{dt} \right) \times \left(\frac{d^2 \overrightarrow{r}}{dt^2} \right) \right\}$$

24. If
$$\overrightarrow{v} \cdot \frac{d\overrightarrow{v}}{dt} \times \frac{d^2\overrightarrow{v}}{dt^2} = 0$$
, show that $\overrightarrow{v} \times \frac{d\overrightarrow{v}}{dt}$ has a fixed direction and that \overrightarrow{v} is parallel to

a fixed plane.

25. Grad
$$(\emptyset \pm \Psi)$$
 = grad $(\emptyset \pm grad \Psi)$

(Affiliated to KOLHAN UNIVERSITY, Chaibasa)

Question Bank

Course

BSc IT 1st Year

Subject Code : ITS01

MATHEMATICS

All questions carry equal marks.

i.e.
$$\nabla(\emptyset \pm \Psi) = \nabla\emptyset \pm \nabla\Psi$$

26. Div
$$(\overrightarrow{a} \pm \overrightarrow{b}) = \text{div } \overrightarrow{a} \pm \text{div } \overrightarrow{b}$$

i.e.
$$\nabla(a \pm b) = \nabla \cdot a \pm \nabla \cdot b$$

27. Curl
$$(\overrightarrow{a} \pm \overrightarrow{b}) = \text{curl } \overrightarrow{a} \pm \text{curl } \overrightarrow{b}$$

i.e.
$$\nabla(a \pm b) = \nabla \times a \pm \nabla \times b$$

28. Grad
$$(\emptyset \Psi) = \emptyset$$
 grad $\Psi + \Psi grad \emptyset$

i.e.
$$\nabla(\phi \Psi) = \phi \nabla \Psi + \Psi \nabla \phi$$

29.
$$\nabla \left(\frac{\emptyset}{\Psi} \right) = \frac{\Psi \nabla \emptyset - \emptyset \nabla \Psi}{\Psi^2}$$

30. Curl
$$(\emptyset \overrightarrow{a}) = (\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z}) \times (\emptyset \overrightarrow{a})$$

i.e.
$$\nabla(\emptyset \overrightarrow{a}) = \emptyset(\nabla \times \overrightarrow{a}) + (\nabla \emptyset) \times \overrightarrow{a}$$

31. Div
$$(\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{b}$$
. (curl \overrightarrow{a}) $-\overrightarrow{a}$. (curl \overrightarrow{b})

i.e.
$$\nabla(\emptyset \ \overrightarrow{a}) = \emptyset(\nabla \times \overrightarrow{a}) + (\nabla\emptyset) \times \overrightarrow{a}$$

31. Div $(\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{b}$. (curl \overrightarrow{a}) $-\overrightarrow{a}$. (curl \overrightarrow{b})
i.e. $\nabla(\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{b}$. $(\nabla \times \overrightarrow{a}) - \overrightarrow{a}$. $(\nabla \times \overrightarrow{b})$

32. Curl
$$(\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{\nabla} \times (\overrightarrow{a} \times \overrightarrow{b}) = (\overrightarrow{b} \cdot \overrightarrow{\nabla}) \overrightarrow{a} - (\overrightarrow{a} \cdot \overrightarrow{\nabla}) \overrightarrow{b} + \overrightarrow{a} \overrightarrow{div} \overrightarrow{b} - \overrightarrow{b} \overrightarrow{div} \overrightarrow{a}$$

33.
$$\nabla \times (\nabla \emptyset) = 0$$
 i.e curl (grad \emptyset) = 0

34. Div (curl
$$\overrightarrow{v}$$
) = 0 i.e ∇ . $(\nabla \times \overrightarrow{v})$ = 0

35. Find the unit vector normal to the surface
$$z^2 = x^2 + y^2$$
 at the point (-1, -2, 5)

36. If
$$\overrightarrow{V} = x^2yz \ \overrightarrow{i} + xy^2z \ \overrightarrow{j} + xyz^2 \ \overrightarrow{k}$$
, find

i)
$$\operatorname{div} \overrightarrow{V}$$
 ii) $\operatorname{curl} \overrightarrow{V}$ iii) $\operatorname{curl} \operatorname{curl} \overrightarrow{V}$

37. Find curl V, where
$$V = e^{xyz} (i + j + k)$$

38. Find div (crul
$$\overrightarrow{F}$$
) where $\overrightarrow{F} = x^2y \overrightarrow{i} + xz \overrightarrow{j} + 2yz \overrightarrow{k}$

39. If
$$\overrightarrow{F} = (x + y + 1) \overrightarrow{i} + \overrightarrow{j} - (x + y) \overrightarrow{k}$$
, show that \overrightarrow{F} curl $\overrightarrow{F} = 0$

(Affiliated to KOLHAN UNIVERSITY, Chaibasa)

Question Bank

Course

BSc IT 1st Year

Subject Code : ITS01

MATHEMATICS

All questions carry equal marks.

40. Find div V and curl V where $V = \nabla (x^3 + y^3 + z^3 - 3xyz)$

41. Evaluate i)
$$\nabla . \overrightarrow{r}$$

ii)
$$\nabla \times \overrightarrow{r}$$

42. Evaluate ∇ r^m

43. Evaluate ∇^2 (r^m)

44. Prove that div (grad r^m) = $\nabla \cdot (\nabla r^m) = m(m+1)r^{m-2}$

45. If \overrightarrow{r} be a position vector and a, b are constant vector, prove that

i) div
$$[(\overrightarrow{r} \times \overrightarrow{a}) \times \overrightarrow{b}] = 2\overrightarrow{b} \cdot \overrightarrow{a}$$

ii) curl $[(\overrightarrow{r} \times \overrightarrow{a}) \times \overrightarrow{b}] = \overrightarrow{b} \times \overrightarrow{a}$

ii) curl
$$[(\overrightarrow{r} \times \overrightarrow{a}) \times \overrightarrow{b}] = \overrightarrow{b} \times \overrightarrow{a}$$

iii)
$$\overrightarrow{a} \cdot \nabla \left(\overrightarrow{b} \cdot \nabla \frac{1}{r} \right) = \frac{3(\overrightarrow{a} \cdot \overrightarrow{r})(\overrightarrow{b} \cdot \overrightarrow{r})}{r^2} - \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{r^3}$$

46. Prove that

$$\operatorname{div} (\mathbf{u} \nabla \mathbf{v}) - \operatorname{div} (\mathbf{v} \nabla \mathbf{u}) = u \nabla^2 v - v \nabla^2 u$$

i.e
$$\nabla \cdot (\mathbf{u} \nabla \mathbf{v} - \mathbf{u} \nabla \mathbf{u}) = u \nabla^2 v - v \nabla^2 u$$

47. Find $\nabla \emptyset$, if

i)
$$\emptyset = \log(x^2 + y^2 + z^2)$$

ii)
$$\emptyset = x \sin z - y \cos z$$

iii)
$$\emptyset = r^2e^{-r}$$

iv)
$$\emptyset = x^2 + y - z - 1$$
 at the point (1, 0, 0)

48. Find $\nabla \cdot \overrightarrow{F}$ where

i)
$$\overrightarrow{F} = 4x^2 \overrightarrow{i} + 3xy \overrightarrow{j} + 9z^2 \overrightarrow{k}$$

ii) $\overrightarrow{F} = x^2 z \overrightarrow{i} - 2y^3 z^2 \overrightarrow{j} + xy^2 z \overrightarrow{k}$

ii)
$$\overrightarrow{F} = x^2z \overrightarrow{i} - 2y^3z^2 \overrightarrow{j} + xy^2z \overrightarrow{k}$$

iii)
$$\overrightarrow{F} = (x^2 - y^2) \overrightarrow{7} + 2xy \overrightarrow{7} + (y^2 - xy) \overrightarrow{R}$$

49. Find the curl of the vectors

$$x^2z \xrightarrow{i} - 2y^3z^2 \xrightarrow{j} + xy^2z \xrightarrow{k}$$
 at the point (1, -1, 1)

(Affiliated to KOLHAN UNIVERSITY, Chaibasa)

 Question Bank \rightarrow \rightarrow Course \Rightarrow BSc IT 1st Year

 Subject Code : ITS01
 Subject : MATHEMATICS

All questions carry equal marks.

50. If
$$r = x i + y j + z k$$
, find $r \cdot \nabla \emptyset$ where $\emptyset = x^3 + y^3 + z^3 - 3xyz$

51. Find div F and curl F = x cosz i + y log x j -
$$z^2k$$

52. Find the unit vector normal to the surface
$$x^2y + 2xz = 4$$
 at the point $(2, -2, 3)$

53. Show that div grad
$$\left(\tan^{-1}\frac{y}{x}\right) = 0$$

54. Compute
$$\nabla^2 r$$
, $\nabla^2 r^2$, $\nabla^2 (r^{-2})$, where $r = \sqrt{x^2 + y^2 + z^2}$

55. Prove that

$$\nabla^2 \left[\nabla \cdot \left(\frac{\overrightarrow{r}}{r^2} \right) \right] = \frac{2}{r^4}$$

56. If \overrightarrow{a} is constant vector, prove that

a.
$$\nabla$$
. $\left(\frac{1}{r}\right) = \left(\frac{a.r}{r^3}\right)$

